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1. INTRODUCTION 
 
Surface discontinuities observed in rocks and sediments have 

proven to be valuable indicators of the deformation history and 

stress pattern of slopes. For landslide analysis, their observation 

and interpretation can contribute to a better understanding of the 

controlling physical processes and help in the assessment of the 

related hazards [1, 2]. Surface fissures may indicate the 

development of future failures [3-5] and are often considered as a 

geo-indicator of the activity stage of a landslide. In sediments, the 

surface fissure characteristics also influences water infiltration and 

drainage, which in turn affect the ground-water system and the 

kinematic response of slopes to hydrological events [6].  

Recent studies [7] have shown that VHR images acquired from 

Unmanned Aerial Vehicles (UAVs) are cost-efficient data sources 

for the monitoring of landslide surfaces at spatial resolutions that allow the recognition of surface features at sub-

decimeter scale. Although, the detection and extraction of linear features is a fundamental operation in digital 

image processing [8, 9] relatively few studies have explored the application of automatic approaches for the 

mapping of such geomorphological relevant features [10-12].  

Considering the increasingly widespread availability of sub-decimetre resolution images from UAVs and other 

airborne platforms, this study targeted the development of a largely automated image analysis technique to detect 

landslide surface fissures from VHR aerial images. The developed method is based on scalable Gaussian 

directional filters that can be used at a single scale or with combined responses over multiple scales. The approach 

was tested on a multi-temporal VHR images acquired at the Super-Sauze landslide in the Southeast French Alps 

and the obtained results were compared to manual mappings carried out by experts. 

Fig. 1: Test subset of the UAV image with 
fissures of different sizes marked 
exemplarily (red arrows). 



2. DATA AND METHODS 
  
The study site is the slow-moving Super-Sauze 

landslide located in the Southern French Alps. In 

October 2010 conducted an aerial survey using a low-

cost UAV system at flight heights between 100 and 250 

m has been conducted. The image acquisition and 

processing is detailed in [7]. For this study, a 35 x 35 m 

subset of the image (Fig. 1) was adopted and the results 

of the automatic detection were compared with fissure 

maps elaborated by experts. 

The pixel size of the image is 0.08m. The fissures 

appear as dark curvey-linear features which are 1-10 

pixels wide and feature cross profiles that resemble an 

inverted Gaussian distribution. Following earlier works 

that exploited such properties for the detection of 

retinal blood vessels [13, 14] a detection routine using a 

Gaussian matched filter (GMF) in combination with the 

first derivate of a Gaussian (FDOG) was implemented.  

The GMF is a two dimensional kernel with a zero mean 

defined in the x-direction by an inverted Gaussian 

profile (Fig. 2a), and in the y-direction by replicates of 

the same profile (Fig. 2b). The size of the kernel and 

corresponding weights are controlled by the standard 

deviation σ of a constituting Gaussian function defined 

for |x|≤3σ and |y|≤L/2. The parameters σ and L 

therefore adjust the filter’s width and length to the 

width and length of the targeted feature, respectively. 

The length parameter was kept constant at 12 pixels corresponding to a typical fissure length of  

As illustrated in Fig. 2c, the GMF yields spurious responses at step edges. This issue can be addressed using an 

FDOG kernel with the same parameters σ and L (Fig. 2f, i). As illustrated in Fig. 2e the FDOG filter responses 

with zero crossing at the location of the fissures. When smoothed with a mean filter of the same size as the kernel 

the zero crossing yields a plateau with low values for the extent of the fissures. Subtracting the absolute values of 

the smoothed FDOG response from the GMF response yields the final filter output in which responses are 

suppressed at step edges (Fig. 2g). For a stronger suppression of edge response multiples of the FDOG response 

Fig. 2: Illustration of the principles of the Gaussian 
filtering for a simplified 1-D case (a-c, f-h), a 3D 
visualization of 2D filters (d,i) and the filter responses
on sample image patches. 



may be subtracted and the final output can be transferred into a binary response selecting a threshold according 

the desired detection sensitivity. Since in practice the orientation of the fissures is a priori unknown, multiple 

rotated versions of the Gaussian filters are applied on the image and for each pixel only the maximum response 

value is retained. This corresponds to finding the angle ,  which maximizes the filter response at a given 

position in the image ,  using Eq. 1: 

, argmax , ⊗ ,																for	0 , 1,2, … 36     Eq. 1 

where ⊗ denotes the convolution operator and  the orientation of the GMF. The observed variability of the 

fissure width also suggests a search among multiple scales and it has been demonstrated that the family of 

Gaussian filters provides an adequate frame work for scale-space analysis [15]. According to scale-space theory 

the Gaussian filter will yield a maximum response as it approaches the scale of a target feature present in the 

image. Applying the filter among a number of predefined scales and retaining for each pixel only the maximum 

response this property can be can be used for automatic scale selection, as recently demonstrated for line 

detection applications [16]. This is similar to finding the orientation of the fissure and is expressed in Eq. 2: 

σ 	 , arg	max	 , ⊗ G ,  for	σ 	 0.6, 0.8, … 3.0                     Eq. 2 

In summary, for each pixel the algorithm finds the GMF peak response orientation and scale, calculates the 

smoothed response of a corresponding FDOG at the same orientation and scale and subtracts the FDOG from the 

GMF. All detections were performed on the green band of the image. 

 
3. RESULTS AND DISCUSSION 

 
Receiver operating characteristic (ROC) analysis is a frequently adopted technique to assess the performance of 

feature detection algorithms since it is not affected by class-imbalance and allows a threshold independent 

comparison among different algorithms [17]. An ROC analysis was carried out to assess the performance of the 

multi-scale fissure detection with respect to two expert maps and compare the results with the single-scale 

method. The ROC plots in Fig. 3d and 3h illustrate that in most cases the multi-scale algorithms outperforms the 

single scale detector, whereas with more conservative thresholds and ground truth (Fig. 3g) the single scale 

detector with the smallest σ=0.6 still yielded lower false positive rates. This must be attributed to generally 

broader responses resulting from peak responses at larger scales in the multi-scale detection. 

In addition to competitive detection accuracies, the proposed algorithm liberates the user from an exhaustive 

search over all possible scales and appears especially useful in situations where the targeted features exhibit great 

size variability. A comparison of the manual mappings (Fig. 3 c, g) also reveals the uncertainty of the reference 

data, which is typical among the ground truth maps based on expert judgments. However, the fact that the inter-

observer agreement is still above the accuracy of the automated detection also indicates that objective image 

information is still not fully exploited and further enhancements to the technique are possible. 
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Fig. 3: ROC analysis of single and multi-scale detections (d, h) with two reference datasets 
(c, g). The best detection results are displayed at a true positive rate of 0.5 (a, b, e, f).


